Fourth International Legume Society Conference **2023 #ilsgranada2023** www.ilsgranada2023.com • info@ilsgranada2023.com

Sowing the Future: Predictions, Simulations & Speed Breeding for Legumes

Dr Sukhjiwan Kaur Agriculture Victoria Melbourne, Australia

Climate Change and Global Agrifood Volatility

"The amount of food produced in the last 12,000 years is the same amount of food we will need to produce in the next 40 years"

Source: <u>https://www.youtube.com/watch?v=2jF2IsicDC4</u> Link from Australian Seed Federation website

By 2050, pulse production should be doubled

OFFICIAL

AGRICULTURE VICTORIA

Omics in Today's World

Genomic Resources Over Time

From Orphans to Pan Genomes

- Genetic linkage maps
- Transcriptome Atlas
- QTL mapping and GWAS studies for trait dissection
- Functional genomic studies

A Data Driven World

From Breeder's eye to Drone's eye

An Integrated Approach

An Integrated Approach – Rate of Genetic Gain

Genetic Variation X Selection Intensity X Selection Accuracy

Target Traits for Lentil and Field pea Breeding

Implementation of Genomic Selection

Training population

- Advanced breeding lines
- Genotyping Infinium SNP chip
- 60,000 70,000 genome wide markers
- Phenotypes (2010-onwards)

• GS models

- Bayesian and GBLUP approaches
- Annual update of training population

Moderate to High prediction accuracies

Trait	Lentil	Field pea
Yield	0.41	0.42
AB resistance	0.56	0.25
BGM resistance	0.49	-
BB resistance	-	0.36
DM resistance		0.35
Bean leaf roll virus res	-	0.50
Seed borne Mosaic virus res	-	0.60
Salinity toxicity	0.47	0.47
Boron toxicity	0.65	0.78
Days to flowering	0.61	0.65
Days to Maturity	0.24	0.35
Early Vigour		0.42
Grain weight - 100	0.83	0.49
Protein content	0.50	0.49
Seed size index	0.75	0.47
Seed Plumpness	0.66	AGRICULTURE

OFFICIAL

TORIA

Implementation of Genomic Selection

Application of Genomic Estimated Breeding Values for

- Early parental selection
 - As early as F_2 progenies
- Multiparent crossing designs ٠
 - Shuffling genetics
- Progeny selection at F4:F5 stage ٠
- Selection of advanced germplasm for national ٠ variety trials – QA/QC

Implementation of Simulations- Parental Selection

- Simulation modelling
 - Greater than 1 million theoretical crosses; diversity
 - Application of selection indices
- Continuous crossing cycle

Implementation of Speed Breeding

4-5 Generations per year – Accelerated gen advance

Production	500,000 t
Value	\$350 million
1% genetic gain	\$3.5 million
2% genetic gain	\$7 million
4% genetic gain	\$14 million

Are We on the Right Path to Feed the World?

Impact

Genetic Variation X Selection Intensity X Selection Accuracy

Generation time (Cross-Cross) OFFICIAL

Breeding for Improved and Durable Disease Resistance

Ascochyta Blight in Chickpea

- Field ٠
 - Field trials in 2020-2022 (n= 2,790)
 - Infected in stubble with a mixture of AB isolates
- Terrace
 - Screened with 7 different isolates from 2016-2022
- Genotyping Infinium SNP chip
 - c. 23 K genome wide SNPs

Collection	Туре	N
СВА	Breeding	396
CCDM	Wild Introgressions	443
FLIP	Pre-breeding	1212
HT	Herbicide mutants	7
UC Davis	Wild Introgressions	193
UWA	Advanced lines	15
Vavilov	Pre-breeding	524
Total		2,790

Implementation of Genomic Selection

High correlation between field and terrace screens implies opportunity to scale phenotyping using field disease nursery

- Bivariate analysis
 - Trait 1: Field BLUEs
 - Trait 2: Mean scores across isolates in terraces
- Genetic correlation
 - $r_g = 0.91 \pm 0.02$

- Genomic Predictions
 - Training using field BLUE to predict terrace data
 - Accuracy is 0.63
 - Training using terrace to predict field BLUEs
 - Accuracy is 0.81

Allele Enrichment through Speed Breeding

Implementation of Genomic Selection and Simulation

Phenotypic assessment

- In silico per cycle to guide cross selection
 - Generate all possible crosses, e.g. 387 F₁ in cycle2 = 74,691 crosses
 - Simulate all crosses till F₈
- Evaluate crosses by GEBVs of F_8
- Select crosses to maximize genetic gain

AGRICULTURE VICTORIA

Breeding for Resistance in Speed Breeding Program

- Enrichment of qualitative resistance QTL across cycles

33% gVar explained by qualitative SNPs

Genetic gain over cycles using qualitative SNPs

Breeding for Resistance in Speed Breeding Program

- Enrichment of quantitative resistance QTL across cycles

- 67% gVar explained by the quantitative SNPs
- 10x more genetic gain observed using quantitative SNPs

Bridging the Gap between Research and Breeding

Points to Think About

- A Holistic Approach
- Bridge the gap between research and breeding
- Open communications among researchers, breeders and growers

Acknowledgements

AVR Team

Zibei Lin Alem Gebre Adnan Riaz Shahin Yazdifar Laura Spooner Shimna Sudheesh Garry Rosewarne Arun Shunmugam Babu Pandey Joshua Fanning Matthew Hayden

Technical and Glasshouse teams

SARDI Team

Judith Atieno Sara Blake Janine Croser Tim Sutton

PhD research opportunities

Seeking the brightest graduates to advance your career in industry supported world-class bioscience research

Apply today

The successful candidates will receive:

- A \$35,000 p.a (tax-free) scholarship for up to three and a half years
- Training in Australia's first integrated agricultural systems biology research centre, AgriBio
- Professional development programs
- International travel opportunities

Based at AgriBio, the Centre for AgriBiosciences, Melbourne or The Grains Innovation Precinct, Horsham, Victoria, Australia

AGRICULTURE VICTORIA